Learning to Predict Indoor Illumination from a Single Image Chih-Hui Ho

Outline

- Introduction
- Method Overview
- LDR Panorama Light Source Detection
- Panorama Recentering Warp
- Learning From LDR Panoramas
- Learning High Dynamic Range Illumination
- Experiments
- Conclusion and Future Work

i-clicker

- Which picture is lit by groundtruth?
- (A)(C)
- (A)(D)
- (B)(C)
- (B)(D)
- (A)(B)

В

i-clicker

- Which picture is lit by groundtruth?
- (A)(C)
- (A)(D)
- (B)(C)
- (B)(D)
- (A)(B)

В

- The goal is to render a virtual 3D object and make it realistic
- Inferring scene illumination from a single photograph is a challenging problem
- The pixel intensities observed in an image are a complex function of scene geometry, materials properties, illumination and the imaging device
- Harder from a single limited field-of-view image

- Some methods
 - Assume that scene geometry or reflectance properties are given
 - Measured using depth sensors, or annotated by a user
 - Impose strong low-dimensional models on the lighting
 - Same scene can have wide range of illuminants
- State-of-the-art techniques are still significantly error-prone
- Is it possible to infer the illumination from an image ?

- Dynamic range is the ratio between brightest and darkest parts in the image
- High dynamic range (HDR) vs Low dynamic range (LDR)
- HDR image stores pixel values that span the whole range of real world scene
- LDR image stores pixel value within some range (i.e. JPEG 255:1)

- An automatic method to infer HDR illumination from a single, limited field-of-view, LDR photograph of an indoor scene
 - Model the range of typical indoor light sources
 - Robust to errors in geometry, surface reflectance, and scene appearance
 - No strong assumptions on scene geometry, material properties, or lighting
- Introduce an end-to-end deep learning based approach
 - Input: A single, limited field-of-view,LDR image
 - Output: A relit virtual object in HDR image
- Application: 3D object insertion
- Everything looks perfect so far

- Two stage training scheme is proposed to train the CNN
 - Stage 1 (96000 training data)
 - Input : LDR, limit field-of-view image
 - Output: target light mask, target RGB panorama
 - Stage 2 (fine tuning) (14000 training data)
 - Input: HDR, limit field-of-view image
 - Output: target light (log) intensity, target RGB panorama

Environment Map

- In computer graphics, environment mapping is an image based lighting technique for approximating a reflective surface
- Cubic mapping
- Sphere mapping
 - Consider the environment to be an infinitely far spherical wall
 - Orthographic projection is used
 - Used by the paper

- What is the problem to train deep NN to learn image illuminations ?
 - Lots of HDR data (Not currently exists)
 - We do have lots of LDR data (Sun 360)
 - But light source are not explicitly available in LDR images
 - LDR images does not capture lighting properly
- Predict HDR lighting conditions from a LDR panoramas
- Now we have the ground truth for HDR lighting mask/ position
- We need an input image patch

Spherical Panorama

- Equirectangular projection: project a spherical image on to a flat plane
- Large distortion at pole
- Rectification is needed

- Extract the training patches from the panorama
- Rectify the cropped patches
- Now we have data {Image,HDR light probe} to train the lighting mask
- How about target RGB panorama ?

- There are still some problems
 - The panorama does not represent the lighting conditions in the cropped scene
 - Center of projection of panorama can be far from the cropped scene
- Panorama warping is needed
- What is warping ?
 - Image warping is a way to manipulate an image to the way we want
 - Image resampling/ mapping
- Now we are ready for stage 1

- In stage 2, light intensity is estimated
- LDR images are not enough
- 2100 HDR image dataset are collected
- Fine tune the CNN
- Use light intensity map and RGB panorama to create a final HDR environment map
- Relit the virtual objects

- Goal: detect bright light sources in LDR panoramas and use them as CNN training data
- Data
 - Manually annotate a set of 400 panoramas from the SUN360 database
 - Light sources: spotlights, lamps, windows, and (bounce) reflections
 - Discard the bottom 15% of the panoramas because of watermarks and few light source
 - \circ 80% data for training and 20% data for testing
 - Labeled lights as positive samples and random negative samples

• Training phase

- Convert panorama into grayscale
- Panorama P is rotated to get P_rot
 - Large distortion caused by equirectangular projection
 - Aligning zenith with the horizontal line
- Compute patch features over P and P_rot at different scale
 - Histogram of Oriented Gradient (HOG)
 - Mean, standard deviation and 99th percentile intensity values
- Train 2 logistic regression classifiers
 - Small light sources (spotlight, lamps)
 - Large light sources (window, reflections)
 - Hard negative mining is used over the entire training set

• Testing phase

- Logistic regression classifiers are applied to P and P_{rot} in a sliding-window fashion
- Each pixel has 2 scores (one from each classifier)
- Define S*rot is Srot rotated back to the original orientation
- $S_{merged} = S^{*}cos(theta) + S^{*}_{rot} + sin(theta)$, and theta is pixel elevation
- Threshold the score to obtain a binary mask
 - Optimal threshold is obtained by maximizing the intersection over union (IoU) score between the resulting binary mask and the ground truth labels on the training set
- Refined with a dense CRF
- Adjusted with opening and closing morphological operations

• Results

- A baseline detector relying solely on the intensity of a pixel
- The proposed method has high recall and precision

$$ext{Precision} = rac{tp}{tp+fp}$$
 $ext{Recall} = rac{tp}{tp+fn}$

- Goal: To solve problem that panorama does not represent the lighting conditions in the cropped scene
- Treating this original panorama as a light source is incorrect
- No access to the scenes to capture ground truth lighting
- Approximate the lighting in the cropped photo by warping

Groundtruth

- Generate a new panorama by placing a virtual camera at a point in the cropped photo
- No scene geometry information is given
- Assumption
 - All scene points are equidistant from the original center of projection
 - Image warping suffices to model the effect of moving the camera
 - Lights that illuminate a scene point, but are not visible from the original camera are not handled (Occlusion)
 - Panorama is placed on a sphere
- $x^2 + y^2 + z^2 = 1$ must hold

- Outgoing rays emanating from a virtual camera placed at (x_0, y_0, z_0)
- $x(t) = v_x^* t + x_0, y(t) = v_y^* t + y_0, z(t) = v_z^* t + z_0$
- $(v_x t + x_0)^2 + (v_y t + y_0)^2 + (v_z t + z_0)^2 = 1$
- Example: Model the effect of using a virtual camera whose nadir is at β (translate along z axis)
- $\{x_0, y_0, z_0\} = \{0, 0, \sin\beta\}.$
- $(v_x^2 + v_y^2 + v_z^2)t^2 + 2v_z t \sin\beta + \sin^2\beta 1 = 0$
- Solve t
- Maps the coordinates to warped camera coordinate system
- How can we determine β ?

- Assume users want to insert objects on to flat horizontal surfaces in the photo
- Detect surface normals in the cropped image [Bansal et al. 2016]
- Find flat surfaces by thresholding based on the angular distance between surface normal and the up vector
- Back project the lowest point on the flattest horizontal surface onto the panorama to obtain β

- EnvyDepth [Banterle et al. 2013] is a system that extracts spatially varying lighting from environment maps (ground truth approximation)
- EnvyDepth needs manual annotating, requires access to scene geometry and takes about 10 min per panorama
- The proposed system is automatic and does not require scene information
- Comparable result with EnvyDepth

Learning from LDR Panoramas

- Ready to train a CNN
- Input: a LDR photo
- Output: a pair of warped panorama and corresponding light mask
- Data
 - For each SUN360 indoor panorama, compute the groundtruth light mask
 - For each SUN360 indoor panorama, take 8 crops with random elevation between $+/-30^{\circ}$
 - 96,000 input-output pairs

Learning from LDR Panoramas

- Learn the low-dimensional encoding (FC-1024) of input (256×192)
- 2 individual decoders are composed of deconvolution layers
 - RGB panorama prediction (256×128)
 - Binary light mask prediction (256×128)
- Loss

 $\mathcal{L}_{L2}(\mathbf{y},\mathbf{t}) = -$

RGB panorama prediction

Binary light mask prediction

$$\frac{1}{N}\sum_{i=1}^{N}\mathbf{s}_{i}(\mathbf{y}_{i}-\mathbf{t}_{i})^{2} \quad \mathcal{L}_{\cos}(\mathbf{y},\mathbf{t},e) = \frac{1}{N}\sum_{i=1}^{N}(\mathcal{F}(\mathbf{y},i,e)-\mathcal{F}(\mathbf{t},i,e))^{2}$$

$$\mathcal{F}(\mathbf{p}, i, e) = \frac{1}{K_i} \sum_{\omega \in \Omega_i} \mathbf{p}(\omega) s(\omega) (\omega \cdot n_i)^{\alpha e}$$

	Layer (stride)	
-	Input	
-	conv9-64 (2)	
	conv4-96 (2)	
	res3-96 (1)	
	res4-128 (2)	
	res4-192 (2)	
	res4-256 (2)	
-	FC-1024	
FC-8192		FC-6144
deconv4-256 (2)	deconv4-192 (2)	
deconv4-128 (2)	deconv4-128 (2)	
deconv4-96 (2)	deconv4-64 (2)	
deconv4-64 (2)	deconv4-32 (2)	
deconv4-32 (2)	deconv4-24 (2)	
conv5-1 (1)	с	onv5-3 (1)
Sigmoid	Tanh	

Output: light mask y_{mask}

k Output: RGB panorama y_{RGB} 27

Closer Look to RGB Loss

- What is solid angle?
- Informal definition
 - Take a surface
 - Project it onto a unit sphere (a sphere of radius 1)
 - Calculate the surface area of your projection.
- It is defined as $\Omega = A / r^2$
- Every pixel in the image corresponds to certain solid angle in the sphere
- This is a weighted loss

$$\mathcal{L}_{L2}(\mathbf{y}, \mathbf{t}) = \frac{1}{N} \sum_{i=1}^{N} \mathbf{s}_i (\mathbf{y}_i - \mathbf{t}_i)^2$$

Closer Look to Mask Loss

- Why not L2 loss ?
- If a spotlight is predicted to be slightly off its ground truth location, a huge penalty will incur
- Pinpointing the exact location of the light sources is not necessary
- Instead, learn the mask gradually by blurring the groundtruth and progressively sharpens it over training time
- Blurriness is a function of epoch

Closer Look to Mask Loss

$$\mathcal{F}(\mathbf{p}, i, e) = \frac{1}{K_i} \sum_{\omega \in \Omega_i} \mathbf{p}(\omega) s(\omega) (\omega \cdot n_i)^{\alpha e}$$

- Cosine distance filter
- Ω_i is the hemisphere centered at pixel i on the panorama p
- n_i the unit normal at pixel i
- K the sum of solid angles on Ω_i
- ω is a unit vector in a specific direction on Ω_i
- $s(\omega)$ the solid angle for the pixel in the direction ω
- $p(\omega)$ is the pixel value in the direction ω
- Note that (w*n_i) is the angle between neary pixels
- This is cos(theta)
- 0 <= cos(theta) <= 1
- So as a*a increased we only hlur the nivels that is closed to nivel i

Learning from LDR Panoramas

- Global loss function
- w1 = 100, w2 = 1, and α = 3
- Training phase

- \circ 85% of the panoramas as training data and 15% as test data
- Testing phase
 - All tests are performed for scenes and lighting conditions that have not been seen by the network
 - Lighting inference (both mask and RGB) from a photo takes approximately 10ms on an Nvidia Titan X Pascal GPU

 $\mathcal{L}(\mathbf{y}, \mathbf{t}, e) = w_1 \mathcal{L}_{L2}(\mathbf{y}_{RGB}, \mathbf{t}_{RGB}) + w_2 \mathcal{L}_{cos}(\mathbf{y}_{mask}, \mathbf{t}_{mask}, e)$

Learning High Dynamic Range Illumination

- Goal: Predict intensities of the light sources
- LDR data is not enough

- 2100 HDR indoor panoramas dataset (high-resolution (7768 × 3884))
- The dynamic range is sufficient to correctly expose all pixels in the scenes, including the light sources.

Learning High Dynamic Range Illumination

• Data

- 5 85% of the HDR data was used for training and 15% for testing
- 8 crops were extracted from each panorama in the HDR dataset, yielding 14,000 input-output pairs
- Panoramas are warped using the same procedure as LDR

Learning High Dynamic Range Illumination

$\mathcal{L}_{\text{HDR}}(\mathbf{y}, \mathbf{t}, e) = w_1 \mathcal{L}_{\text{L2}}(\mathbf{y}_{\text{RGB}}, \mathbf{t}_{\text{RGB}})$

• Training phase

+ $w_2 \mathcal{L}_{cos}(\mathbf{y}_{int}, \mathbf{t}_{int}, e) + w_3 \mathcal{L}_{L2}(\mathbf{y}_{int}, \mathbf{t}_{int}, e)$

- Fine tuning on HDR dataset to learn the light source intensities
- Conv5-1 weights are randomly re-initialized
- Fix weights before FC 1024
- Target intensity t_{int} is defined as the log of the HDR intensity
- Low intensities are clamped to 0
- Epoch e is continued from training on the LDR data

	Layer (stride)
	Input
	conv9-64 (2)
	conv4-96 (2)
	res3-96 (1)
	res4-128 (2)
	res4-192 (2)
	res4-256 (2)
	FC-1024
	FC-8192
de	econv4-256 (2)
de	econv4-128 (2)
d	econv4-96 (2)
d	econv4-64 (2)
d	econv4-32 (2)

conv5-1 (1) Sigmoid

Output: light mask ymask

Experiment -- LDR Network

- Light prediction results on the SUN360 dataset (LDR data)
- Evaluate by rendering a virtual bunny model into the image

Experiment -- LDR Network

- Warping panorama cannot handle occlusions
- Even though the window causing the shadows on the handle in the image (left) is occluded in the panorama (right), the network places the highest probability of a light in this direction

• 2100 images are tested

(c) $p = 50, \mathcal{L} = 0.13$

redicted log-inten

- Ground truth log-intensities range is [0.04, 3.01]
- Yellow (high intensity) vs Blue (low intensity)

(e) $p = 100, \mathcal{L} = 3.1$

(d) p = 75, $\mathcal{L} = 0.27$

- The HDR network output can generate a HDR environment map
- $x_{\text{combined}} = 10^{x_{\text{mask}}} + x_{\text{RGB}}$
- Recovering only the relative illumination intensities
- Matched the mean RGB value of the RGB prediction and the color of the light
- Able to select a global intensity scaling parameter

Ground truth

Intensity multiplier = 7.5

Intensity multiplier = 0.5

Intensity multiplier = 3.0

Intensity multiplier = 12.0

- Khan et al. [2006]
 - Estimate the illumination conditions by projecting the background image on a sphere
 - Fails to estimate the proper dynamic range and position of light sources
- Karsch et al. [2014]
 - Use a light classifier to detect in-view lights, estimate out-of-view light locations by matching the background image to a database of panoramas
 - Estimate light intensities using a rendering-based optimization
 - Relies on reconstructing the depth and the diffuse albedo of the scene
 - Panorama matching is based on image appearance features that are not necessarily correlated with scene illumination
- Proposed method
 - Robust estimates of lighting direction and intensity
 - Learn direct mapping between image appearance and scene illumination

(a) Ground truth lighting

(b) Our HDR network

(c) HDR network, intensity tuned

(d) [Khan et al. 2006]

(e) [Karsch et al. 2014]

Ground truth (inset: input image)

HDR network

HDR network + intensity scaling (fine tuned)

LDR network

Ground truth (inset: input image)

LDR network

HDR network

HDR network + intensity scaling (fine tuned)

[Karsch et al. 2014]

Ground truth (inset: input image)

HDR network

HDR network + intensity scaling (fine tuned)

[Karsch et al. 2014]

45

Ground truth (inset: input image)

HDR network

LDR network

User study

- How realistic do synthetic objects lit by our estimates look when they are composited into input images?
- Showed users a pair of images ground truth vs one of the methods

Conclusion and Future Work

- An end-to-end illumination estimation method that leverages a deep convolutional network to take a limited-field-of-view image as input and produce an estimation of HDR illumination
- A state-of-the-art light source detection method for LDR panoramas and a panorama warping method
- A new HDR environment map dataset

Conclusion and Future Work

- Some issues cause by filtering
 - Not accurate in inferring the spatial extent and orientation of light sources, particularly for out-of-view lights
 - Large area lights might be detected as smaller lights
 - Sharp light sources get blurred out
- Network is better at recovering the light source locations than intensity
 - Larger LDR training set than HDR training set fine-tuning step
- Indoor illumination is localized
 - Recovering spatially-varying lighting distribution is challenging

Reference

- <u>http://vision.gel.ulaval.ca/~jflalonde/projects/deepIndoorLight/</u>
- http://indoor.hdrdb.com/datapreview.html
- https://en.wikipedia.org/wiki/Tone_mapping
- <u>https://computergraphics.stackexchange.com/questions/4185/why-is-spherical-harmonics-used-in-low-frequency-graphics-data-instead-of-a-sphe/4186</u>
- <u>https://en.wikipedia.org/wiki/Rendering_(computer_graphics)</u>
- https://en.wikipedia.org/wiki/Rendering_equation
- https://en.wikipedia.org/wiki/Sphere_mapping
- https://en.wikipedia.org/wiki/Reflection_mapping
- <u>https://www.youtube.com/watch?annotation_id=annotation_1471204287&feature=iv&src_vid=xutvBtrG23A&v=_lx5o_N8eC1E</u>
- https://www.youtube.com/watch?v=xutvBtrG23A
- https://jmonkeyengine.github.io/wiki/jme3/advanced/pbr_part3.html
- http://people.csail.mit.edu/jxiao/SUN360/
- <u>https://en.wikipedia.org/wiki/Equirectangular_projectio</u>